
VRED Job Submission
Step by step instructions for submitting VRED jobs with Qube!

Step 1 (First Time Only)
Install the Qube! Submission Menu
Open WranglerView on the machine you are going to submit from, and install
the submission UI by locating it in the File > Install App UI > Install VRED
Batchrender App UI.. line, as shown here.

The VRED Jobtype comes with the standard install of Qube! and does not
require a specific jobtype to be installed.

Step 2
 Open the Submission Menu
Once installed you should be able to locate the "Qube!" menu in VRED.
REQUIRE SCREENSHOT

Step 3
This will present a pre filled submission UI. Ensure sections marked in red
have the correct details.

Step 4
Click "Submit".

For further details on the submission UI see below.

Job Submission Details

Optional Settings
While not strictly required, the following settings are useful for getting
a better result. You will need to turn on "Expert Mode" (check box at
the bottom of the submission UI) in order to get access to them.

By default, Qube! will not retry failed frames. So set the
"Retry frame/instance" value to 3 or 5, to get 3 or 5 retries
before it gives up. Related to that, the default wait between
retries is zero seconds, which is typically not useful. Set the
"Retry Work Delay" to a value like 5 or 10 to allow machines
time to recover from temporary problems such as network
errors.
Make sure the correct version of VRED is set, especially if
you are submitting from one version but expecting to pick up
jobs on another.

Not all sections need to be filled in in order to render only the fields marked in are requiredred

Click here for details...

Name
This is the name of the job of the job so it can be easily identified in the Qube! UI.

Priority
Every job in Qube is assigned a numeric priority. Priority 1 is higher than priority
100. This is similar to 1st place, 2nd place, 3rd place, etc. The default priority
assigned to a job is 9999.

Instances
This is the number of copies of the application that will run at the same time across
the network. The combination of "Instances=1" and "Max Instances=-1" means that
this job will take as much of the farm as it can, and all jobs will share evenly across
the farm.

Examples:

On a 12 slot(core) machine running Maya if you set
"Instances" to 4
"Reservations" to "host.processors=3"
Qube! will open 4 sessions of Maya on the Worker(s) simultaneously, which may
consume all slots/cores on a given Worker.

if you set
"Instances" to 1
"Reservations" to "host.processors=1+"
Qube will open 1 session of Maya on a Worker, consuming all slots/cores
("host.processors=1+" is used for all slots/cores).

Max Instances
If resources are available, Qube! will spawn more than 'Instances' copies of the
application, but no more than 'Max Instances'. The default of -1 means there is no
maximum. If this is set to 0, then it won't spawn more than 'Instances' copies.

More on & & Instances Reservations SmartShare Studio Defaults

Click here for details...

Range
Frame range for the job (e.g 1-100, or 1-100x3, or 1,3,7,10)

Most jobs require a frame range to execute on the workers. You can set this range
in a few different ways :

"1-100" will just render the range between 1 and 100
"1-100x3" will render the range 1 to 100, every third frame, so 1, 4, 7, etc.
"1,3,7,10" will only render the selected frames 1,3,7,10

Execution
How to break up frame range to be executed. Use QB_START_FRAME,
QB_END_FRAME and QB_FRAME_NUMBER

When submitting a job to the farm it may be more efficient to "chunk" your job. This
means that when the job is sent to the worker it tells the worker to render N
consecutive frames before requesting more work. You would do this to keep from
reopening the scene file for each frame. Large scene files can take substantial time
to open, which is wasteful across dozens or hundreds of frames.

The drop down options are below:

"Individual frames" this tells the worker to render 1 frame at a time.
"Chunks with n frames" this tells the worker to render consecutively the
number of frames specified in the field.
"Split into n partitions" this tells the worker to render consecutively the total

http://docs.pipelinefx.com/display/QUBE/Job+Structure
http://docs.pipelinefx.com/display/QUBE/Job+Reservations
http://docs.pipelinefx.com/display/QUBE/SmartShare+Studio+Defaults

frames in the range divided by the number in the field.

Examples:

range 1-100 with "individual frames" set will render 1 frame at a time
range 1-100 with "Chunks with n frames" and the field set to 5 will send 20
frames to each instance
range 1-100 with "Split into n partitions" and the field set to 4 will send 25
frames to each instance

rangeOrdering
Order to render the items.
(Ascending=1,2,3,4,5...,Descending=10,9,8...,Binary=first,middle,last...)

You can set the order in which your frames are rendered. The drop down options
are:

"Ascending" - this will render the frames counting upwards from your start
frame
"Decending" - this will render the frames counting backwards from your
end frame
"Binary" - This will render the first, last, and middle frames of the range,
then the middle frame of the first half and the middle frame of the second
half, and so on. This is useful for sampling the frames in the sequence to
make sure it is rendering correctly.

Click here for details...

Use Preview Frames

Enabling preview frames will create 2 jobs:

A primary dependent job with a higher priority that will render the selected
frames first
A secondary job with lower priority that will render the remaining frames. T
his will return the selected frames faster so that you can check the
accuracy of your renders.

Frame Numbers

Choose the frames that you wish to render first. If left blank the default is to render
the first frame, the last frame and the middle frame in that order. You can select
specific frames by adding comma separated frame numbers e.g 1,2,10,15,75, or a
range with, e.g., 1-100x5 (1 to 100, every 5th frame)

Preview Priority

Choose the priority for the preview job. This can be set by the site admin.

Preview Subjobs

Choose the number of instances / subjobs for the preview frames. By default, this
is equal to the number of preview frames - that is, it will try to do all the preview
frames at the same time.

Note that when you submit a job with preview frames enabled, it will actually submit
2 jobs—one with the preview frames list at a higher priority, and another with the
rest of the agenda, at the normal priority (as specified in the job's field).Priority
You will get, consequently, 2 job IDs for the submission.

Parameters Specific to VRED

Click here for details...

VRED Paths

VRED product type
Allows the job to find the right version of VRED executable on each Worker.
Defaults to the version of VRED that the job was launched from.

Use VREDServerNode
Choose whether to use the VRED Pro/Design or VREDServerNode executable
when not using the VREDCluster product type.

VRED Version
Select version numbers and the worker platform to make an educated guess at
where VRED is found on the remote worker.

VRED Executable
Explicit path to the VRED Pro, Design or VREDServerNode executable.

VRED Scene
Browse or enter manually the location of the scene file to be rendered. This is a
required field for submission

Important: Best practice is to ensure the scene file and all of its dependent files
such as textures are on network storage accessible by the workers.

VRED Render Output
VRED View
View in scene to render

Render Directory
Specify the Directory for output

Image File Basename
File name without the extension, can use placeholders for the frame numbers:
name.###

Output Format

Specify the image format from the dropdown

VRED Image Size

Image Height

Specify the Image height in pixels.

Image Width
Specify the Image width in pixels

VRED Image Alpha Settings

Alpha
Alpha channel: On/Off

Alpha (red)
Alpha value, between 0.0 and 1.0.
Alpha (green)
Alpha value, between 0.0 and 1.0.

Alpha (blue)
Alpha value, between 0.0 and 1.0.

VRED Render Quality Settings

SuperSampling
Supersampling factor.

DPI resolution
Dots per inch.

Click here for details...

Cmd Template
This is used to create the command string for launching the job on the worker. It
will be set differently depending on the application you are launching from.

Shell (Linux/OSX)
Explicitly specify the Linux/OS X shell to use when executing the command
(defaults to /bin/sh).

Click here for details...

Qube Job Tags
New in Qube 6.5

Note: The Job Tags section of the submission UI will not be visible unless they are
turned on in the in the Wrangler View UI. Preferences Job Tags are explained in
detail on the page.Job Tags

http://docs.pipelinefx.com/display/QUBE/Job+Tags

Click here for details...

Hosts

Explicit list of Worker hostnames that will be allowed to run the job
(comma-separated).

Groups

Explicit list of Worker groups that will be allowed to run the job
(comma-separated). Groups identify machines through some
attribute they have, eg, a GPU, an amount of memory, a license to
run a particular application, etc. Jobs cannot migrate from one
group to another. See .worker_groups

Omit Hosts

Explicit list of Worker hostnames that are not allowed run the job
(comma-separated).

Omit Groups

Explicit list of Worker groups that are allowed to run the jobnot
(comma-separated).

Priority Cluster

Clusters are non-overlapping sets of machines. Your job will run at
the given priority in the given cluster. If that cluster is full, the job
can run in a different cluster, but at lower priority. Clustering

http://docs.pipelinefx.com/display/QUBE/worker_groups
http://docs.pipelinefx.com/display/QUBE/Clustering

Example:

A job submitted to /showB/lighting will run with its given priority in /showB/lighting cluster.
If hat job can run in ./showB/lighting is full, t /showB/FX, but at a lower priority
If both /showB/lighting and /showB/FX are full, the job can run in /showA/* at an even lower priority.

Host Order

Order to select Workers for running the job (comma-separated) [+
means ascending, - means descending].

Host Order is a way of telling the job how to select/order workers

"+host.processors.avail" means prefer workers which have more slots
available
"+host.memory.avail" means prefer workers which have more memory
available
"+host.memory.total" means prefer workers which have more total
memory
"+host.processor_speed" means prefer workers with higher cpu speeds
"+host.cpus" means prefer workers with higher total cpu slots

Requirements

Worker properties needed to be met for job to run on that Worker
(comma-separated, expression-based). Click 'Browse' to choose
from a list of Host Order Options.

Requirements is a way to tell the workers that this job needs specific properties
to be present in order to run. The drop-down menu allows a choice of OS:

"winnt" will fill the field with "host.os=winnt" which means only run on
Windows based workers
"linux" will fill the field with "host.os=linux" which means only run on Linux
based workers
"osx" will fill the field with "host.os=osx" which means only run on OSX
based workers

You can also add any other Worker properties via plain text. Some examples:

"host.processors.avail.=4" means only run this job on workers that have 4 or
more slots available
"host.processors.used=0" means only run this job on workers with 0 slots in
use
"host.memory.avail=400" means only run this job on workers that have 400
memory available

With integer values, you can use any numerical relationships, e.g. =, <, >, <=,
>=. This won't work for string values or floating point values. Multiple
requirements can also be combined with AND and OR (the symbols && and ||
will also work).

The 'Only 1 of a "kind" of job' checkbox will restrict a Worker to running only one
instance with a matching "kind" field (see below). The prime example is After
Effects, which will only allow a single instance of AE on a machine. Using this
checkbox and the "Kind" field, you can restrict a Worker to only one running
copy of After Effects, while still leaving the Worker's other slots available for
other "kinds" of jobs.

Reservations

Worker resources to reserve when running job
(comma-separated, expression-based).

Reservations is a way to tell the workers that this job will reserve the specific resources for this job.

Menu items:

"host.processors" this will fill the field with "host.processors=X" which means reserve X slots on the worker while running this job
"host.memory" this will fill the field with "host.memory=X" which means only reserve X memory on the worker while running this job

Other options:

"host.license.nuke=1" when a entry has been made you can reserve any arbitrary named item. Once you create aGlobal Resources New in 6.6:
global resource, it will show up in this menu (eg global.vray above).
See also Job Reservations

Restrictions

Restrict job to run only on specified clusters ("||"-separated) [+

http://docs.pipelinefx.com/display/QUB065/Global+Resources
http://docs.pipelinefx.com/display/QUB065/Job+Reservations

means all below, * means at that level]. Click 'Browse' to choose
from a list of Restrictions Options.

Restrictions is a way to tell the workers that this job can only run on specific
clusters. You can choose more than one cluster in the list.

Examples:

Choosing /showA would restrict the job to machines that are only in the
/showA cluster, and no other cluster, not even those below /showA.
Choosing /showA/* would restrict the job to the cluster(s) /showA, butbelow

 /showAnot including
Choosing /showA/+ would restrict the job to /showA and all the clusters
below it.

See Also

Controlling Host Selection
How to use qbwrk.conf
worker_groups
worker_cluster
How to use clustering for workers

Click here for details...

Flags

List of submission flag strings (comma separated). Click 'Browse'
to choose required job flags.

http://docs.pipelinefx.com/display/QUBE/Controlling+Host+Selection
http://docs.pipelinefx.com/display/QUBE/How+to+use+qbwrk.conf
http://docs.pipelinefx.com/display/QUBE/worker_groups
http://docs.pipelinefx.com/display/QUBE/worker_cluster
http://docs.pipelinefx.com/display/QUBE/How+to+use+clustering+for+workers

See for a full explanation of flag meaningsthis page

Dependency

Wait for specified jobs to complete before starting this job

http://docs.pipelinefx.com/display/QUBE/Job+Flags

(comma-separated). Click 'Add' to create dependent jobs.

You can link jobs to each other in several ways:

"complete" means only start this job after designated job completes
"failed" means only start this job if the designated job fails
"killed" means only start this job if the designated job has been killed
"done" means start this job if the designated job is killed/failed/complete

The second menu chooses between "job" (the entire set of frames) and "work"
(typically a frame). So to link frame 1 of one job to frame 1 of a second, job, you
would choose "work" in this menu. If you want to wait for all the frames of one
job to complete before starting a second, then choose "job". The other option,
"subjob", refers to the instance of a job. This is much less common, but means
that, for example, the instance of Maya that was running frames has completed.

For a complete description on how to define complex dependencies between
jobs or frames, please refer to the section of the Developers Guide.Callbacks

Email (job complete)

Send email on job completion (success or failure). Sends mail to
the designated user.

Email (failed frames)

Sends mail to the designated user if frames fail.

Blocked

Set initial state of job to "blocked".

Stderr->Stdout

Redirect and consolidate the job stderr stream to the stdout
stream. Enable this if you would like to combine your logs into one
stream.

Job Label

Optional label to identify the job. Must be unique within a Job
Process Group. This is most useful for submitting sets of
dependent jobs, where you don't know in advance the job IDs to
depend on, but you do know the labels.

Job Kind

Arbitrary typing information that can be used to identify the job. It
is commonly used to make sure only one of this "kind" of job runs
on a worker at the same time by setting the job's requirements to

http://docs.pipelinefx.com/display/QUBE/Callbacks

include "not (job.kind in host.duty.kind)". See How to restrict a
host to only one instance of a given kind of job, but still allow other
jobs

Process Group

Job Process Group for logically organizing dependent jobs.
Defaults to the jobid. Combination of "label" and "Process Group"
must be unique for a job. See Process group labels

Retry Frame/Instance

Number of times to retry a failed frame/job instance. The default
value of -1 means don't retry.

Retry Work Delay

Number of seconds between retries.

Subjob Timeout

Kill the subjob process if running for the specified time (in
seconds). Value of -1 means disabled. Use this if the acceptable
instance/subjob spawn time is known.

Frame Timeout

Kill the agenda/frame if running for the specified time (in seconds).
 Value of -1 means disabled. Use this if you know how long
frames should take, so that you can automatically kill those
running long.

Click here for details...

Cwd

Current Working Directory to use when running the job.

Environment Variables

Environment variables override when running a job. You can
specify key/value pairs of environment variables

This is useful when you might need different settings for your render applications
based on different departments or projects.

Impersonate User

You can specify which user you would like to submit the job as.

http://docs.pipelinefx.com/display/QUBE/How+to+restrict+a+host+to+only+one+instance+of+a+given+kind+of+job%2C+but+still+allow+other+jobs
http://docs.pipelinefx.com/display/QUBE/How+to+restrict+a+host+to+only+one+instance+of+a+given+kind+of+job%2C+but+still+allow+other+jobs
http://docs.pipelinefx.com/display/QUBE/How+to+restrict+a+host+to+only+one+instance+of+a+given+kind+of+job%2C+but+still+allow+other+jobs
http://docs.pipelinefx.com/display/QUBE/Process+group+labels

The default is the current user. The format is simply <username>.
This is useful for troubleshooting a job that may fail if sent from a
specific user.

Example:

Setting "josh" would attempt to submit the job as the user "josh"
regardless of your current user ID.

Note: In order to do this, the submitting user must have "impersonate user"
permissions.

Click here for details...

Windows-only Environment Variables
Used to provide OS specific environment variables for Windows. Enter variables
and values to override when running jobs.

Linux-only Environment Variables
. Enter variables andUsed to provide OS specific environment variables for Linux

values to override when running jobs.

Darwin-only Environment Variables
. Enter variables andUsed to provide OS specific environment variables for OS X

values to override when running jobs.

Click here for details...

Min File Size

Used to test the created output file to ensure that it is at least the minimum size
specified. Put in the minimum size for output files, in bytes. A zero (0) disables the
test.

regex_highlights

Used to add highlights into logs. Enter a regular expression that, if matched, will be
highlighted in the information messages from stdout/stderr.

regex_errors

Used to catch errors that show up in stdout/stderr. For example, if you list "error:
2145" here and this string is present in the logs, the job will be marked as failed.
This field comes pre-populated with expressions based on the application you are
submitting from. You can add more to the list, one entry per line.

regex_outputPaths

Regular expression for identifying outputPaths of images from stdout/stder. This is
useful for returning information to the Qube GUI so that the "Browse Ouput"
right-mouse menu works.

regex_progress

Regular expression for identifying in-frame/chunk progress from stdout/stderr.
Used to identify strings for relaying the progress of frames.

regex_maxlines

Maximum number of lines to store for regex matched patterns for stdout/stderr.
Used to truncate the size of log files.

Click here for details...

GenerateMovie

Select this option to create a secondary job that will wait for the
render to complete then combine the output files into a movie.

Note: For this to work correctly the has to be setup"Qube (ImagesToMovie) Job..."
to use your studios transcoding application.

Examples
To see examples of regular expressions for these contexts, look at the
Nuke (cmdline) submission dialog - it has several already filled in.

http://docs.pipelinefx.com/display/QUBE/Qube+Movie+Job+Submission

Click here for details...

Account

Arbitrary accounting or project data (user-specified). This can be
used for creating tags for your job.

You can add entries by typing in the drop-down window or select already created
accounts from the drop-down.

See also Qube! Job Tags

Notes

Freeform text for making notes on this job. Add text about the job
for future reference. Viewable in the Qube UI.

http://docs.pipelinefx.com/display/QUBE/Job+Tags

	VRED Job Submission

