
qbwrk.conf File Format
The  file format is very similar to the  format, with just the inclusion of a macro and template inheritance system. Note thatqbwrk.conf qb.conf
quoted strings in the  file  be done with . Using single-quotes may result in unexpected behavior, including valuesqbwrk.conf must double-quotes
being completely ignored.  Click on each section heading below to expand the description.

Comments

Comments are preceded by the "#" character; everything after the character is ignored by the parser.

Example
key = value #and then the comment

#comment key is equal to value

Hostname Expansion

When defining configuration for a range of hosts which are numbered, it is simpler to group them in numeric range definitions. This is
accomplished in the header of the configuration:

[pfx[000-100]]

Example
[pfx[000-100]]

worker_cluster = /project

Here we define the configurations for all named Workers pfx000 through pfx100. If you don't want to pad out the numeric portion of
the host name, simply leave out the initial "0" characters:

[fast[1-100]]

worker_cluster = /other

Ranged host name entries will accept templates, just like individual host entries.

[group]

worker_groups = "mygroup"

[sqb[10-20]] : group

Macro Variables

To simplify definition of templates as well as Worker configurations, the qbwrk.conf also supports the use of macro variables. These are in the
format:

$template.name
"${ }"template.name

The template names self and this are reserved words and can be used to reference local settings. The variable $_ is also reserved for the
local template's name as well as to represent child templates which inherit the template.

Format
[template]key = value[host]otherkey = ${template.key}
evaluates to:
[template]key = value[host]otherkey = value

Example
[ref]
worker_cluster = /project[logs]
worker_logfile = "/logdir/${_}.workerlog"

[qb001] : template

inherit template

http://template.name
http://template.name


worker_cluster = "${ref.worker_cluster}/vfx"

For Worker qb001, worker_cluster will evaluate to "/project/vfx".

[qb002] : template

inherit template

worker_cluster = $ref.worker_cluster

In the case of Worker qb002, worker_cluster is defined to be the worker_cluster entry from template ref: "/project".

Key / Value Pairs

The qbwrk.conf file is broken up into sections containing key/value pair settings. Each section is described by a header between brackets "["
and "]". Section names may only consist of the characters a-z, A-Z, 0-9 and "_". As for the key/value pair format, the key's name is always
represented first, followed by an "=" sign and finally the value. While whitespace such as spaces or tabs don't matter, it is important that the
key/value pair remain on a single line unless curly braces are used to describe the value.

Format
[section]
key = valuekey = "value1 value2"
key = { value1 value2 }

Example
[qb001]

 hostname

worker_cluster = /projects/movie

config entry

Predefined Platform Sections

There are a few "special" section names that can be used for the different platforms. These will be associated with the Workers using the
respective platform.

[default]
[winnt]
[osx]
[linux]

Example

[linux]
worker_cluster = /mylinuxboxes

Template Inheritance

The advantage of the macro file format is the use of template inheritance and value replacement. A section is allowed to "inherit" another
section's key/value pairs. This can be accomplished by adding a colon and a space-delimited list of templates.

Example
The section:

The 'default' template is applied to  workers, regardless of operating system, and is inherited by every other template. Soall

[winnt]
[winnt] : default

are equivalent.

The  file is read from top to bottom. A template can only inherit from an already-defined template that appears beforeqbwrk.conf
it in the file.



[qube]
key9 = value00

[section]
key = value
key1 = value1 

[section2] : section
key = value3

[section3] : section2 qube

evaluates to:

[qube]
key9 = value00

[section]
key = value
key1 = value1

[section2]
key = value3
key1 = value1

[section3]
key = value3
key1 = value1
key9 = value00

The [global_config] Section (New in 6.9-1)

 A  section may be defined in the qbwrk.conf file to set up global qbwrk.conf configurations.[global_config]

Currently, it supports the following two parameters, used primarily to optimize the loading time of qbwrk.conf:

templates: explicitly list all template names in the qbwrk.conf file

non_existent: explicitly list all non_existent hostnames that are listed in qbwrk.conf

During the loading of the qbwrk.conf file, if a section name like  is encountered, the "name" is assumed to be a valid hostname of a[name]
worker that is online and accessible, and the supervisor tries to look up the IP address from the name.

In certain network setups, if the "name" is actually a qbwrk.conf template name or a hostname of a non-existent (offline or inaccessible)
worker, this can slow things down quite a bit since each such lookup needs to time out. In those situations, the above two parameters,
"templates" and "non_existent" in the  section can be properly set up to optimize the loading time for qbwrk.conf, which in[global_config]
turn speeds up the execution of `qbadmin w -reconfig` and also the supervisor boot process.

Example:
[global_config]

templates = centos,ubuntu

non_existent = render[071-100],render123,render155

 

[centos]

worker_cluster = /projects/foobar

 

[ubuntu]

worker_cluster = /projects/secret

 

[render[001-200]]

worker_groups = "dedicated"

 

In the example above, the section names "centos" and "ubuntu" are listed in the global_config's "templates" parameter, and also the



machines "render[071-100],render123,render155" are listed as "non_existent". The supervisor, when loading the qbwrk.conf file, skips the IP
address lookup for these listed names, thereby speeding up the process.

Note that in the example, it is assumed that the "non_existent" machines are not online, perhaps taken down for maintenance, and therefore
the site administrator has listed them there.

Also note that numerical range expansions are allowed in the value of the "non_existent" parameter (as in "render[071-100]"), to conveniently
specify a contiguous chunk of hostnames.

Working Example

As an example, let's say you need all machines to define proxy_account and proxy_password, you would then:

[default] 
proxy_account = render 
proxy_password = cbda878cd5ad5dcdab8967dbc86bc786a857ada57bc # < -
generated by qbhash

 

Then let's say you want to define a worker path map, but it will be different based on the OS, you would then:

[osx] 
worker_path_map = {
 "\\" : "/",
 "X:/project" : "/Volumes/xsan/project",
 "H:/" : "/home", 
} 
 
[winnt] 
worker_path_map = {
 "/Volumes/xsan/project" : "X:/project",
 "/home" : "H:/",
 "/" : "\\", 
}

 

Now let's say you want hosts01 - host05 to be in a group called "groupA" and a cluster called "/foo"; and host06 - host10 to be in a group
called "groupB" and a cluster called "/bar", and then host11-15 need to be in group "groupB" and cluster "/bar" and define a worker_restriction
of "/bar/+":



[groupa_rule] 
worker_groups = groupA 
worker_clsuter = /foo 
 
[groupb_rule] 
worker_groups = groupB 
worker_cluster = /bar 
 
[host[01-05]] : groupa_rule 
 
[host[06-10]] : groupb_rule 
 
[host[11-15]] : groupb_rule 
worker_restriction = /bar/+

 

Now let's say that host07 is special and needs to be a member of both groupB and nvidia, but not lose its worker_cluster. Just redefine it
afterwards (the file is read top to bottom):

[host07] 
worker_groups = groupB,nvidia

 

Here's the whole thing together:



[default] 
proxy_account = render 
proxy_password = cbda878cd5ad5dcdab8967dbc86bc786a857ada57bc
 
[osx] 
worker_path_map = {
 "\\" : "/",
 "X:/project" : "/Volumes/xsan/project",
 "H:/" : "/home", 
} 
 
[winnt] 
worker_path_map = {
 "/Volumes/xsan/project" : "X:/project",
 "/home" : "H:/",
 "/" : "\\", 
} 
 
[groupa_rule] 
worker_groups = groupA 
worker_clsuter = /foo 
 
[groupb_rule] 
worker_groups = groupB 
worker_cluster = /bar 
 
[host[01-05]] : groupa_rule 
 
[host[06-10]] : groupb_rule 
 
[host[11-15]] : groupb_rule 
worker_restriction = /bar/+ 
 
[host07] 
worker_groups = groupB,nvidia

 

To pull it all together, if host12 were a windows machine, it would get the following config:



proxy_account = render # from default 
proxy_password = cbda878cd5ad5dcdab8967dbc86bc786a857ada57bc # from
default 
worker_path_map = {
 "/Volumes/xsan/project" : "X:/project",
 "/home" : "H:/",
 "/" : "\\", 
} # from [winnt] 
worker_groups = groupB # from [host12] ( [host[11-15]] ) which inherited
from [groupb_rule] 
worker_cluster = /bar # from [host12] ( [host[11-15]] ) which inherited
from [groupb_rule] 
worker_restriction = /bar/+ # from [host12] ( [host[11-15]] )

 

We never had to inherit from [osx] or [winnt], as those were already applied to all OSX and Windows machines before we
even got into [host*] sections.
There are no machines called "group*_rule" - those are just placeholders, if you will.
You can do all of this through WranglerView on the supervisor (you must be running it on the supervisor for this to work).
Simply multi-select workers on the worker layout, right-click > "Configure on supervisor", then change all the parameters
you choose and click OK. This is somewhat less flexible, but many people prefer GUIs.


	qbwrk.conf File Format

