
1.  
2.  

1.  
2.  
3.  
4.  
5.  

Job Dependencies

Job Parents
Qube! allows parent/child relationships between jobs. This does not imply dependency. With proper use of callbacks, it can be used to set up
complex abstract dependencies, without the use of process groups. Qube! allows the user to specify the parent ID through the API or on the
command line.

Example

% qbsub --pid 12314 Render myscenefile.ma

Job Dependencies
Suppose you want to link up two or more jobs so that when one finishes, the next one will run. Qube! provides two methods for performing this
task:

--waitfor option in qbsub
job callbacks with the API

Using the --waitfor option with qbsub is by far the easier of the two approaches; however, it is not without some limitations in flexibility. The
technique is straightforward:

Submit the first job with qbsub
Collect the job ID, say id
Submit the dependent job with qbsub --waitfor id
Collect the job ID if more dependent jobs are required
This can also be accomplished using the job dependency field feature. A job will wait until the specified condition is reached. The format
of the dependency field is exactly the format used in the callback trigger field (See )Triggers

What happens

The first job is submitted normally. If the second job is submitted with a --waitfor option, it will be submitted in the blocked state. When the first job
finishes, it will unblock and run.

Example

Using the waitfor option:
% qbsub --name jobA sleep 60  (this creates job 220)
% qbsub --name jobB --waitfor 220 sleep 60

Using the dependency option:
% qbsub --name jobA sleep 60  (this creates job 220)
% qbsub --name jobB --dependency link-complete-job-220 sleep 60

Process Groups
Qube! process groups are created upon job submission. Jobs are associated in the same process group by submitting them all in the same
qb::submit API call, or they may be connected by specifying the "pid" number for the job during submission.

Example

% qbsub --pgrp 1002 sleep 100

Wait On
For developers who prefer to use Qube! as a remote procedure mechanism for executing commands and waiting for them to complete before
continuing with the execution of their scripts/tools, the  command allows a user to submit a job and expect  to wait until the jobqbsub qbsub
completes, fails or is killed. This is very easily done by using the  option.--waiton

Example

The command will block until the submitted job finishes:

http://docs.pipelinefx.com/display/QUBE/Triggers


% qbsub --waiton sleep 10

Example Script

#!/bin/sh
# Create new rib files
mtor etc. etc. etc..
#Render the files
qbsub –waiton prman myfiles.rib
# Cleanup
rm myfiles.rib


	Job Dependencies

