
Job Priority

Numerical Priority
Jobs have a numerical priority that is assigned to them when they are submitted, and which can be changed by the user or the wrangler later. The
priority ranges from 1 to 9999, with 1 being the highest and 9999 the lowest.

Priority can be limited for non-privileged users
Administrators may not want to allow users to assign themselves the highest possible priority, reserving that privilege for render wranglers or
other special users. The highest priority a non-administrator can assign to a job is controlled by the supervisorsupervisor_highest_user_priority
configuration parameter.

Clustering and Job Priority
Qube! makes use of a concept it calls "clusters". The clusters in a Qube! farm are laid out in a tree-like structure, much like a directory tree where
files are kept on disk. The classic example of this is the show/sequence/shot hierarchy.

Clusters are designated in the same way as a directory tree; the root is written as ' ', and clusters in the root are written as /A, /B, and /C/D (/C is/
in the root, and D is "above" /C). Clusters are organized like a directory tree, but instead of branching left to right, it's convenient to imagine them
branching upwards, away from the root. In the same way that folders in a directory tree contain files and other folders, clusters can contain other
clusters. Clusters can also contain Workers and jobs. This is the key to Qube!'s priority scheme.

Workers belong to 1 and only 1 cluster.
Jobs are submitted into a cluster; you can change a job's cluster after it's submitted, but it will always be in 1 and only 1 cluster at a time.

The cluster membership of both a Worker and a job is considered when determining the overall priority of a job to run on a particular Worker. The
basic rules are:

A Worker will run the lowest-priority job that is in its own cluster before it runs the highest-priority job from any other cluster.
If there are no jobs in its own cluster waiting to run, a Worker will then run jobs from other cluster in decreasing priority.

So jobs from other clusters have lower priority than jobs from the same cluster. But there is even a precedence ordering for all the other clusters;
jobs in clusters nearer a Worker's cluster are considered before jobs from clusters farther away. It "costs" a job priority to run in clusters other than
its own, and the cost increases as the distance between the job's cluster and the Worker's cluster increases.

Climbing "down" the tree (toward the root) usually has no cost. However, a job submitted to /A/B/C has higher priority in /A/B/C, compared to /A/B,
but that's just because the former case is in its own cluster. It's when a job starts climbing up the tree that it starts to lose priority.

A job has the top cluster priority in its exact cluster path.
It has 2nd cluster priority at all cluster nodes under its branch (towards the root).
So, a job submitted to /A/B/C/D/E has the highest priority in /A/B/C/D/E.
It has 2nd priority in /A/B/C/D, since a job specifically submitted to /A/B/C/D has top priority in there.

When a job cannot find any hosts by descending down its tree branch towards the root and has to start "climbing" the tree to find hosts, it loses
priority. The more level it has to climb up, the lower its priority.

If jobA is submitted to /A, jobB to /B, then they both will have the same priority in /C.
If jobA is submitted to /, jobB to /B, then still both of them have the same priority in /C.
If jobA is submitted to /A, jobB to /B, jobA will have higher priority than jobB in /A/C because jobA only has to climb up 1 level, whereas
jobB has to climb up 2 levels (over to / then up to /A/C).

Another example that shows how jobs in different clusters are prioritized on the same Worker in /A/B/C:

Job Cluster Calculated cluster priority order for a Worker in /A/B/C Cluster traversal count

job cluster = /A/B/C 1 no traversal

job cluster = /A/B/C/D 2 1 traversal down

job cluster = /A/B/C/D/E 2 2 traversals down

http://docs.pipelinefx.com/display/QUBE/supervisor_highest_user_priority

job cluster = /A/B 3 1 traversal up

job cluster = /A/B/F 3 1 traversal down, 1 up

job cluster = /A 4 2 traversals up

job cluster = / 5 3 traversals up

job cluster = /G 5 1 down to /, 3 up into /A/B/C

All jobs are first sorted by the cluster priority order for the Worker, and then sorted by the job's numerical priority value within that priority order.

the lowest priority job with cluster priority order 1 will have a higher effective priority than the highest priority job with cluster priority order
2
the lowest priority job with cluster priority order 2 will have a higher effective priority than the highest priority job with cluster priority order
3
and so on…

See Also
How to use clustering for workers

How clustering affects priority and worker selection for jobs

worker_cluster

supervisor_default_cluster

client_cluster

supervisor_highest_user_priority

http://docs.pipelinefx.com/display/QUBE/How+to+use+clustering+for+workers
http://docs.pipelinefx.com/display/QUBE/Clustering
http://docs.pipelinefx.com/display/QUBE/worker_cluster
http://docs.pipelinefx.com/display/QUBE/supervisor_default_cluster
http://docs.pipelinefx.com/display/QUBE/client_cluster
http://docs.pipelinefx.com/display/QUBE/supervisor_highest_user_priority

	Job Priority

