
3DSMax Job Submission QubeUI
Step by step instructions for submitting 3dsMax jobs with Qube!

Step 1
If you have been going through this Install Guide in order, you should be able
to locate the "Qube!" menu in 3dsMax (picture). If you don't have that menu
item, you need to install the QubeUI 3dsMax In-App Submission UI on the
client.

With a scene loaded in 3dsMax choose "Submit Render...".

Note that you could also choose "Submit Batch Render..." depending on your
requirements.

Render vs Batch Render
What's the difference?

Submit Render will open a copy (instance) of 3dsMax on the
Worker that picks up the job, and that instance will render frames as
assigned by the Supervisor. Since the scene file is only being
opened one time, this can be faster to generate the full sequence.

Submit Batch Render will use the command line to open a new
instance of the 3dsMax file for each frame that it renders. Although
this can be slower for large scenes, it can also be more flexible in
large, complex environments.

Step 2
This will present a pre-filled submission UI like the one shown at right.

Ensure sections marked in red have the correct details.

Important: Because 3dsMax doesn't allow thread control, you need to make
sure that each instance of 3dsMax occupies the full Worker. By default the
"3ds Max LoadOnce Render" submission sets the reservation to "host.process

 do this manually select "Worker Selection" and click on the '...'ors=1+", but to
button next to the right. Check the box marked "All" and accept. You should
end up with the parameter "host.processors=1+" as shown here.

Step 3

Click 'Submit'

For further details on the submission UI see below.

Job Submission Details

Not all sections need to be filled in in order to render. Only the fields marked in are required.red

Click here for details...

Job Name
This is the name of the job of the job so it can be easily identified in the Qube! UI.

Priority
Every job in Qube is assigned a numeric priority. Priority 1 is higher than priority
100. This is similar to 1st place, 2nd place, 3rd place, etc. The default priority
assigned to a job is 9999.

Farm Concurrency CPUs
This is the number of copies of the application that will run at the same time across
the network. The combination of "Instances=1" and "Max Instances=-1" means that
this job will take as much of the farm as it can, and all jobs will share evenly across
the farm.

Examples:

On a 12 slot(core) machine running Maya if you set
"Instances" to 4
"Reservations" to "host.processors=3"
Qube! will open 4 sessions of Maya on the Worker(s) simultaneously, which may
consume all slots/cores on a given Worker.

if you set
"Instances" to 1
"Reservations" to "host.processors=1+"
Qube will open 1 session of Maya on a Worker, consuming all slots/cores
("host.processors=1+" is used for all slots/cores).

Farm Concurrency Max
If resources are available, Qube! will spawn more than 'Instances' copies of the
application, but no more than 'Max Instances'. The default of -1 means there is no
maximum. If this is set to 0, then it won't spawn more than 'Instances' copies.

More on & & Instances Reservations SmartShare Studio Defaults

Threads per instance
Number of threads requested per instances.

Instances use all cores
This checkbox sets the instances to request all cores on a worker.

Range
Frame range for the job (e.g 1-100, or 1-100x3, or 1,3,7,10). Most jobs require a
frame range to execute on the Workers. You can set this range in a few different
ways :

"1-100" will just render the range between 1 and 100
"1-100x3" will render every 3rd frame in the range 1 to 100; 1, 4, 7, ..., 94,
97, 100
"1,3,7,10" will only render the selected frames 1,3,7,10

Range Execution Order
Order to render the items.
(Ascending=1,2,3,4,5...,Descending=10,9,8...,Binary=first,middle,last...) You can
set the order in which your frames are rendered. The drop down options are:

"Ascending" - this will render the frames counting upwards from your start
frame
"Decending" - this will render the frames counting backwards from your
end frame
"Binary" - This will render the first, last, and middle frames of the range,
then the middle frame of the first half and the middle frame of the second
half, and so on. This is useful for sampling the frames in the sequence to

http://docs.pipelinefx.com/display/QUBE/Job+Structure
http://docs.pipelinefx.com/display/QUBE/Job+Reservations
http://docs.pipelinefx.com/display/QUBE/SmartShare+Studio+Defaults

make sure it is rendering correctly.

Retries
Number of times to retry a failed frame/job instance. The default value of -1 means
don't retry.

Retry Delay
Number of seconds between retries.

Click here for details...

Hosts

Explicit list of Worker hostnames that will be allowed to run the job
(comma-separated).

Groups

Explicit list of Worker groups that will be allowed to run the job
(comma-separated). Groups identify machines through some
attribute they have, eg, a GPU, an amount of memory, a license to
run a particular application, etc. Jobs cannot migrate from one
group to another. See .worker_groups

Omit Hosts

Explicit list of Worker hostnames that are not allowed run the job
(comma-separated).

Omit Groups

Explicit list of Worker groups that are allowed to run the jobnot
(comma-separated).

Priority Cluster

Clusters are non-overlapping sets of machines. Your job will run at
the given priority in the given cluster. If that cluster is full, the job
can run in a different cluster, but at lower priority. Clustering

http://docs.pipelinefx.com/display/QUBE/worker_groups
http://docs.pipelinefx.com/display/QUBE/Clustering

Example:

A job submitted to /showB/lighting will run with its given priority in /showB/lighting cluster.
If hat job can run in ./showB/lighting is full, t /showB/FX, but at a lower priority
If both /showB/lighting and /showB/FX are full, the job can run in /showA/* at an even lower priority.

Host Order

Order to select Workers for running the job (comma-separated) [+
means ascending, - means descending].

Host Order is a way of telling the job how to select/order workers

"+host.processors.avail" means prefer workers which have more slots available
"+host.memory.avail" means prefer workers which have more memory available
"+host.memory.total" means prefer workers which have more total memory
"+host.processor_speed" means prefer workers with higher cpu speeds
"+host.cpus" means prefer workers with higher total cpu slots

Requirements

Worker properties needed to be met for job to run on that Worker
(comma-separated, expression-based). Click 'Browse' to choose
from a list of Host Order Options.

Requirements is a way to tell the workers that this job needs specific properties to be present in order to run. The drop-down menu allows a choice of
OS:

"winnt" will fill the field with "host.os=winnt" which means only run on Windows based workers
"linux" will fill the field with "host.os=linux" which means only run on Linux based workers
"osx" will fill the field with "host.os=osx" which means only run on macOS based workers

You can also add any other Worker properties via plain text. Some examples:

"host.processors.avail.=4" means only run this job on workers that have 4 or more slots available
"host.processors.used=0" means only run this job on workers with 0 slots in use
"host.memory.avail=400" means only run this job on workers that have 400 memory available

With integer values, you can use any numerical relationships, e.g. =, <, >, <=, >=. This won't work for string values or floating point values. Multiple
requirements can also be combined with AND and OR (the symbols && and || will also work).

The 'Only 1 of a "kind" of job' checkbox will restrict a Worker to running only one instance with a matching "kind" field (see below). The prime example
is After Effects, which will only allow a single instance of AE on a machine. Using this checkbox and the "Kind" field, you can restrict a Worker to only
one running copy of After Effects, while still leaving the Worker's other slots available for other "kinds" of jobs.

Reservations

Worker resources to reserve when running job
(comma-separated, expression-based).

Reservations is a way to tell the workers that this job will reserve the specific resources for this job.

Menu items:

"host.processors" this will fill the field with "host.processors=X" which means reserve X slots on the worker while running this job
"host.memory" this will fill the field with "host.memory=X" which means only reserve X memory on the worker while running this job

Restrictions

Restrict job to run only on specified clusters ("||"-separated) [+
means all below, * means at that level]. Click 'Browse' to choose
from a list of Restrictions Options.

Restrictions is a way to tell the workers that this job can only run on specific clusters. You can choose more than one cluster in the list.

Examples:

Choosing /showA would restrict the job to machines that are only in the /showA cluster, and no other cluster, not even those below /showA.
Choosing /showA/* would restrict the job to the cluster(s) /showA, but /showAbelow not including
Choosing /showA/+ would restrict the job to /showA and all the clusters below it.

See Also

Controlling Host Selection
How to use qbwrk.conf
worker_groups
worker_cluster
How to use clustering for workers

Click here for details...

Flags

List of submission flag strings (comma separated).

Dependency

Wait for specified jobs to complete before starting this job
(comma-separated).

Email (job complete)

Send email on job completion (success or failure). Sends mail to
the designated user.

Email (failed frames)

Sends mail to the designated user if frames fail.

Blocked

Set initial state of job to "blocked".

Combine Stdout/err

Redirect and consolidate the job stderr stream to the stdout
stream. Enable this if you would like to combine your logs into one
stream.

Job Label

Optional label to identify the job. Must be unique within a Job
Process Group. This is most useful for submitting sets of
dependent jobs, where you don't know in advance the job IDs to
depend on, but you do know the labels.

Job Kind

Arbitrary typing information that can be used to identify the job. It
is commonly used to make sure only one of this "kind" of job runs

http://docs.pipelinefx.com/display/QUBE/Controlling+Host+Selection
http://docs.pipelinefx.com/display/QUBE/How+to+use+qbwrk.conf
http://docs.pipelinefx.com/display/QUBE/worker_groups
http://docs.pipelinefx.com/display/QUBE/worker_cluster
http://docs.pipelinefx.com/display/QUBE/How+to+use+clustering+for+workers

on a worker at the same time by setting the job's requirements to
include "not (job.kind in host.duty.kind)". See How to restrict a
host to only one instance of a given kind of job, but still allow other
jobs

Process Group

Job Process Group for logically organizing dependent jobs.
Defaults to the jobid. Combination of "label" and "Process Group"
must be unique for a job. See Process group labels

Instance Timeout

Kill the subjob process if running for the specified time (in
seconds). Value of -1 means disabled. Use this if the acceptable
instance/subjob spawn time is known.

Agenda (Frame) Timeout

Kill the agenda/frame if running for the specified time (in seconds).
 Value of -1 means disabled. Use this if you know how long
frames should take, so that you can automatically kill those
running long.

Impersonate User

Users with 'Impersonate user' permissions may choose the name of another user
to submit their jobs as.

Click here for details...

Qube Job Tags

Job Tags are explained in detail on the page.Job Tags

Click here for details...

Job Pre-flight
Some executable (e.g. a script) that will run before the job runs. Ifon the Worker
the pre-flight fails, the job will not run on this Worker, but will be moved to another.
Useful for setting up environments, copying required images, checking the
existence of fonts on the Worker, etc.

Job Post-flight
An executable that will run after the job has finished on that Worker. on the Worker
If this fails, the instance is failed.

http://docs.pipelinefx.com/display/QUBE/How+to+restrict+a+host+to+only+one+instance+of+a+given+kind+of+job%2C+but+still+allow+other+jobs
http://docs.pipelinefx.com/display/QUBE/How+to+restrict+a+host+to+only+one+instance+of+a+given+kind+of+job%2C+but+still+allow+other+jobs
http://docs.pipelinefx.com/display/QUBE/How+to+restrict+a+host+to+only+one+instance+of+a+given+kind+of+job%2C+but+still+allow+other+jobs
http://docs.pipelinefx.com/display/QUBE/Process+group+labels
http://docs.pipelinefx.com/display/QUBE/Job+Tags

Agenda Pre-flight
Some executable (e.g. a script) that will run before the frame/workon the Worker
runs. If this fails, the frame/work will be marked as failed and rendering will be
skipped. If there are retries configured, the frame/work will be treated according to
those settings.

Agenda Post-flight
An executable that will run after the frame/work runs. If this fails, theon the Worker
frame/work will be marked as failed, even if the render, itself, was succesful. If
there are retries configured, the frame/work will be treated according to those
settings.

Click here for details...

CWD

Current Working Directory to use when running the job.

Environment Variables

Environment variables override when running a job. You can
specify key/value pairs of environment variables.

This is useful when you might need different settings for your render applications
based on different departments or projects.

Click here for details...

Delay
Set if the delay is used.

Start Time
The job is blocked on the Supervisor until this day and time set via this widget.

Click here for details...

Account

Arbitrary accounting or project data (user-specified). This can be used for creating
tags for your job.

You can add entries by typing in the drop-down window or select already created
accounts from the drop-down.

See also Qube! Job Tags

Notes
Freeform text for making notes on this job. Add text about the job for future
reference. Viewable in QubeUI.

.

http://docs.pipelinefx.com/display/QUBE/Job+Tags

	3DSMax Job Submission QubeUI

