
Job Reservations
Qube!'s reservation system is important for correct management of host resources. This is accomplished with the relationship between
reservations and resources.

Each host has a list of resources including system resources such as memory and number of processors. Resources are integer based (meaning
'1' and '99' are valid resource counts; 'a' and '4.5' are not) and automatically decrement/increment upon acceptance of a job. A resource can be
"discovered" by the system (eg, number of cores) or defined by admins (eg, number of licenses).

The user must know whether the resource is global or host-based (see). Global resources are tracked throughSystem-Wide Resource Tracking
the entire system, for example, license tracking. A host resource is local and specific to each host, for example the number of cores.

Resources are defined and reserved through this syntax:

. = [, . = …]type name quantity type name quantity

This is set on the Supervisor (for global resources, see), on the host (for host-based resources, see supervisor_global_resources worker_resourc
) and/or in the job submission UI in the reservations field.es

Specifying Quantity

Syntax Meaning

host.processors=1+ Dispatch to a worker with at least 1 open slot, then occupy all currently open slots.
The host.processors= + general form is N , where N is a positive integer.

host.processors=1* Dispatch to a worker with at least 1 open slot no used slots (i.e. and worker must be idle!), then occupy all currently
 open slots.

host.processors=N* N The general form is , where is a positive integer

host.processors=all Equivalent to host.processors=1*

host.processors=N-M Dispatch to a worker with at least N to M open slots. Upon being dispatched to a worker, it occupies as many slots
as it can, up to M, as slots become available.

Dynamic Thread Assignment

When a 1+ or similar job picks up on a Worker, we don't know how many slots were available or assigned to that instance. That number is made
available dynamically in the running job's environment as an environment variable, , (or whatever the value) and stored in theQB_JOBSLOTS=6
Qube! database in the job's subjob table as "allocations". One use of this could be that the job references $QB_JOBSLOTS on the command line
to specify the number of threads a renderer should use.

Examples

Reservation Explanation

"host.memory=200" Reserve 200MB of memory on the host

"host.processors=1+" Reserve all processors on a host, but at least 1 must be available in order to start

"host.processors=1-20" Reserve 20 processors on a single host, but at least 1 must be available in order to start

"global.maya=1" Reserve a global resource called maya

See Also
supervisor_global_resources
worker_resources
System-Wide Resource Tracking

http://docs.pipelinefx.com/display/QUBE/System-Wide+Resource+Tracking
http://docs.pipelinefx.com/display/QUBE/supervisor_global_resources
http://docs.pipelinefx.com/display/QUBE/worker_resources
http://docs.pipelinefx.com/display/QUBE/worker_resources
http://docs.pipelinefx.com/display/QUBE/supervisor_global_resources
http://docs.pipelinefx.com/display/QUBE/worker_resources
http://docs.pipelinefx.com/display/QUBE/System-Wide+Resource+Tracking

	Job Reservations

