Basic dependencies

The next step is to understand basic dependencies.

In this example, we use the job's dependency field to set up a job-based dependency. Job based dependencies are those that will wait for the
entire dependent job to finish before the current job starts. There are also subjob (instance) and agenda (frame) based dependencies.

jobSubmit_dependency-example.py

#!1 /usr/ bi n/ env python3
i mport o0s, sys

The next few lines attenpt to inport the Qube API. If the path to the gb nodul e
is not in $PATH or $PYTHONPATH, we will attenpt to find it by | ooking in known
| ocations
try:
i mport gb
except | nportError:
if os.environ.get("QD R"):
gbdir_api = os.path.join(os.environ.get("QD R"),
for api _path in (gbdir_api,
"/ Appl i cati ons/ pf x/ qube/ api / pyt hon/ ",
"/usr/local/pfx/qubel/api/python/",
"C:\\ Program Fi |l es\\ pf x\\ qube\\ api \\ pyt hon",
"C:\\Program Fi |l es (x86)\\pfx\\qube\\api\\python"):
if api _path not in sys.path and os. path. exists(api_path):
sys. path.insert (0, api _path)
try:
i mport gb
except :
continue
br eak
this should throw an exception if we've exhuasted all other possibilities

i mport gb

api ", "pyt hon")

def main():
We're going to submit two jobs in the exanple - the second will wait
for the first

Set up the basic job properties as we've done before. W're going to do

a "sleep” job, so we'll limt this test to osx or |inux
job = {}

job['nane'] = 'python parent job'

job['cpus'] =2

job['prototype'] = 'cndrange'

job['requirenments'] = 'host.os=linux or host.os=osx’

For the package, we'll just do a sinple sleep

package = {}

package['cndline'] = "sleep 5

job[' package'] = package

Create a typical agenda, as we've done in previous exanples.
agendaRange = ' 0-60x10’

agenda = gb. genfranes(agendaRange)

job["agenda'] = agenda

Now we submit a single job (as a single elenment |ist).

This will be the parent job

I'i st Of JobsToSubmit = []
i st Of JobsToSubnit. append(j ob)
listOf SubmittedJobs = gb.subnmit(listOf JobsToSubmit)

parentJobl D = |istOf SubmittedJobs[O]["id']

print('parent: %l % parentJobl D)

e S e e e e e e e
Now we' ||l create a second job that will be dependent on the first
the basic setup is the same as before

job = {}

job['"nane'] = 'python child job'

job['cpus'] =1

job['prototype'] = 'cndrange

job['requirenents'] = 'host.os=linux or host.os=osx'

To create the dependency on the parent, we sinply create a
'dependency' attribute. See link in this doc's text for nore information
job[' dependency'] = 'link-done-job-%' % parentJoblD

Continuing on, we create a typical "sleep" job for testing
package = {}

package['cndline'] = 'sleep 20

job[' package'] = package

As before, we submt the single job as a single elenent |ist
listOf JobsToSubmit = []

i st Of JobsToSubnit. append(]j ob)

listOf SubmittedJobs = gb.subnmit(listOf JobsToSubmit)

for job in IistOf Subm ttedJobs
print('child: %' %job['id])
if name_ =" _ pmain_"
mai n()
sys. exit(0)

Running this script will create 2 jobs. The first will run immediately, the second will be in a blocked state until the first job completes, then it will
automatically start running.

Continue to Advanced Dependencies

http://docs.pipelinefx.com/display/QUBE/Advanced+Dependencies

	Basic dependencies

